ANALYSIS I MIDTERM EXAMINATION

Total marks: 35

- (1) Prove that the Principle of Mathematical Induction, the Principle of Strong Induction and the Well Ordering Property of \mathbb{N} are all equivalent. (6 marks)
- (2) Prove that if A_n is a countable set for each $n \in \mathbb{N}$, then their union $\bigcup_{n=1}^{\infty} A_n$ is countable. Prove that if B_1, \dots, B_r are a finite number of countable sets, then their product $\prod_{i=1}^{r} B_i$ is countable. (3+3 marks)
- (3) State the completeness property of \mathbb{R} . Using the completeness property of \mathbb{R} , prove that there exists a positive real number x such that $x^2 = 5$. Prove that the ordered field \mathbb{Q} of rational numbers does not satisfy the completeness property. (2+3+1 marks)
- (4) (a) Prove that a Cauchy sequence of real numbers converges. (3 marks)
 - (b) Compute $\lim_{n\to\infty} (n^{1/n})$. (3 marks)
- (5) Let $X = (x_n)$ be a sequence of real numbers which converges. Let $\lim_{n\to\infty} (x_n) = x$, where $x \in \mathbb{R}$. Let $Y = (y_n)$ be another sequence of real numbers. Prove that $\limsup_{n\to\infty} (x_n + y_n) = x + \limsup_{n\to\infty} (y_n)$. (5 marks)
- (6) Show that the sequence of real numbers $x_n = \sum_{i=1}^n (-1)^{i+1}/i$ converges. (6 marks)

Date: September 3, 2015.